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For one-dimensional expanding maps  T with an invariant measure # we con- 
sider, in a parameter space, the envelope gn of the real lines associated to any 
couple of points of the orbit, connected by n iterations of T. If the map has s 
inverses and is piecewise linear, then the sets gn are just the union of s" points 
and converge to the invariant Cantor  set of T. A correspondence between all the 
sets and their measures is established and allows one to associate the atomic 
measure on ~1 to the c ompletly continuous measure on the Cantor  set. If the 
map is nonlinear, hyperbolic, and has s inverses, the sets gn are bomeomorphic  
to the Cantor  set; they converge to the Cantor  set of T and their measures 
converge to the measure of the Cantor  set when n --* ~ .  The correspondence 
between the sets gn allows one to define converging approximation schemes for 
the map an its measure: one replaces each of the s" disjoint sets with a point in 
a convenient neighborhood and a probability equal to its measure and trans- 
forms it back to the original set gl. All the approximations with linear Cantor  
systems previously proposed are recovered, the converging proprties being 
straightforward in the present scheme. Moreover, extensions to higher dimen- 
sionality and to nondisconnected repellers arte possible and are briefly 
examined. 

KEY WORDS: Mixing repellers; Cantor  set; Julia set; linear approximation; 
p-balanced measures. 

1. I N T R O D U C T I O N  

Among the nontrivial dynamical systems whose parameters specifying the 
ergodic and geometric properties can be explicitly evaluated, ~1,2'4) certainly 
the linear Cantors aree the most relevant. As a consequence, it is nature to 
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approximate the nonlinear Cantors such as the mixing repellers (3) with 
sequences of linear Cantors. A former approximation scheme was based (4 6) 
on sequences of linear Cantors whose first-order partition agrees with the 
order-n partition for the nonlinear Cantor. Convergence results for the free 
energy were obtained, not for the measures. 

The analysis of the convergence properties of the measures of the 
approximating sequence and the classification of all possible approximation 
schemes remained to be done. 

These problems are solved in the present work, using a duality 
between the configuration space and a parameter space and a renormaliza- 
tion scheme. The basic idea is the following: given an expanding map T on 
the real line, whose repeller is a Cantor set C with an invariant measure #, 
we consider the envelope g, of the straight lines 5~ in a parameter  space 
(2, b) defined by xn+k=2xk+b, where xk is any point of the orbit and 
xn+k is obtained by n backward iterations Tn(x,+k)=x~. The measure # 
on the Cantor  induces a measure #~ on ~,. When n ~ oo the sequence gn 
converges to C, while #,, converge to # on C. For  a linear Cantor, g,, is the 
union of s" distinct points and the measure #n is atomic. Any set g, of the 
sequence can be mapped back to g -  gl. As a consequence, one can 
associate to all the atomic measures /z, on g, and the completely 
continuous measure on the Cantor to which they converge the atomic 
measures with s masses on & 

When the Cantor  is nonlinear (since T is nonlinear), gn are given by 
union of s n sets g,,j homeomorphic to the Cantor C. In this case we replace 
each of the sets g,,j with a point in a suitable neighborhood, associate to 
it a probability pj equal to its measure, and transform these points back to 
~, obtaining a discrete set 2 ~("), with the corresponding atomic measure. 
This corresponds to a linear Cantor  system, in ordinary space, with s n 
scales, but in general overlapping preimages. The convergence ~(")  to g 
and of the corresponding measures together with the correspondence 
between the Cantor C itself and g allows us to establish the approximation 
theory with linear Cantor  systems. 

This result is significant not only because it induces a duality between 
the configuration and parameter  space, but also because it allows us to 
define in a rigorous way a sequence of simple converging approximations 
of the repeller and its measure. The envelope method in the parameter  
space allows us to extend the linear approximation method also to connec- 
ted repellers such as the quadratic Julia sets of a quadratic map z' = z 2 - p 
for p close to 0. The case of the circle p = 0 will be explicitly discussed. The 
method seems to fail, at least as far as uniform convergence is concerned, 
when the system is no longer hyperbolic, as is the case for the Julia set with 
p = 2. Extensions to higher dimensions are rather straightforward. 
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The plan of the paper is as follows: in Section 2 we consider the case 
of linear maps and show that there is a natural correspondence between 
points lying on the Cantor  set and the p-balanced measure supported on 
it on one side and the lines which produce the envelope and the measure 
induced on them on the other; the limiting envelope is the Cantor  set itself. 
In Section 3 we discuss the nonlinear case and state that each kth-level 
envelope and its measure are homeomorphic  to the Cantor  set and its 
measure; again the limiting envelope is the Cantor  set itself. Section 4 deals 
with the particular case of quadratic maps; we introduce the renormaliza- 
tion transform on the envelopes and give convergence results to the atrac- 
for and the p-balanced measure associated to it. It should be noticed that 
this result does not depend on the form of the map and so can be 
immediately generalized to any finite set of nonlinear maps Tk which satisfy 
condition (2.1) below. In Section 5 we generalize the approximation and 
renormalization scheme to sequences of points which lay out of the enve- 
lopes such as those in refs. 4-6. Section 6 deals with the nondisconnected 
cases p = 0, 2, while in the Appendix some remarks are given for the case 
in which the maps do not depend only on the first predecessor element of 
the sequence, but the first envelope is "degenerate." 

2. LINEAR C A N T O R  S Y S T E M S  

We consider a mixing repeller (T, #, C) where C is a Cantor set and 
# is an invariant measure on C. We assume CcI=_ [0, 1], d i a m ( C ) =  1, 

T 1(1)= 0 Ik, Iknlj=~2~, kr  k,j=l,...,s (2.1) 
j = l  

and that T is expanding 

IT(x) - T(y)I/> a I x -  Yl, a > 1 (2.2) 

The inverses of T on lj will be denoted by Tj rather than T71 to simplify 
the notation and we shall denote the elements of the order-n partition of 
C by 

Ij,....,j=Tj, . . . . .  Tj~(I), l<~jk<<.s, l<~k<<.n (2.3) 

The measure # is specified by the probabilities Pl ..... Ps associated with 
T1 ..... T S, respectively. The time series or orbit ~?= {Xo, xl,...,xk,...}, where 
Xo~ C and x~+l = Tj(xk) with probability pj, is dense on C except for a set 
of measure zero of initial conditions (fixed points). This system of inverse 
maps and their probabilities is known also as an iterated function system 
(IFS).(7-1~ 
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The equations of the straight lines in the parameter  space b, ), are 

x , + k = 2 x k + b ,  k = l ,  2 .... (2.4) 

where T~ + k ) =  xk. In a more explicit notation, given an x - - x k ,  any 
of its s" preimages of order n should be labeled with a set of n indices and 
we will write 

Xjl,...,jn:~ Tj n . . . . .  Tj l(X ) = ~ X ~ " b ,  

The envelope of these straight lines is given by 

d 
'~ = dxx xj,,..~,~.(x) 

b = x j l , , ~ ( x ) - 2 x  

x e  [0, 1] (2.5) 

(2.6) 

When x e I ,  Eq. (2.6) defines s n disjoint curves in the plane b, 2 which we 
shall denote by 2! ~) tx~ (n) x Jl,...,J,, I, bj~,...,j,(). If x e C, as is the case for x -  xk a 
point of the orbit, then each curve is replaced by a set homeomorphic to 
the Cantor. To any arc 2(n)Jl,...,Jo,tx~,, b~ ) ...... j,(x) we associate the measure 
v(2, b) = #(xj~.._..j,(x)), so that the measure of the full arc is Pil ""  PJ,- 

We shall first examine the trivial case of a linear Cantor  system, 

Tk(x) =-- Lk(x)  = 2~x + b~, k = 1,..., s (2.7) 

It is evident that lines (2.4) in the 2, b plane pass through the point 
{2k, b~} if xn = L~(Xn_l). Given a pair (x,,_ 1, xn), it identifies in a unique 
manner one of the possible pairs {2k, b~}; here the nonoverlapping condi- 
tion (2.1) is essential to avoid ambiguities in the association. In the linear 
case the Legendre transform produces a singular envelope given by s points 
{'~k, bk}, k = 1,..., s. 

The structure of a single bunch of lines, of the intersections of all the 
lines of one bunch with a single line of a second one, and, finally, the set 
of intersections of the lines of two bunches is in a natural correspondence 
with the structure of C: 

Proposition 1. (i) The closure of the set of translation coefficients 
of the kth  arc is diffeomorphic to C. The same is true for the angular 
coefficients of the lines. The measure associated to these sets is 
diffeomorphic to the p-balanced measure of C restricted to Lk(I). 

(ii) The closure of the set of intersections of the lines of a bunch with 
a fixed line of a second one is diffeomorphic to C. The measure associated 
to this set is diffeomorphic to the p-balanced measure of C. 
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(iii) The closure of the set of intersections of the lines of the kth 
bunch with those of the /th one is diffeomorphic to C x C. The measure 
associated is PkPi# • #. 

(iv) Statements (i)-(iii) are still true in the case in which p i =  p~(x) 
are the probability functions associated to an hyperbolic IFS which satisfies 
(2.1) and (2.2) and Pi: I ~  [0, lJ  are continuous functions, uniformly 
bounded away from zero, whose continuity modules satisfy Dini's condi- 
tion(11 13) and moreover Z pi(x) = 1 for any x E/. 

The proof follows trivially from the nonoverlapping hypothesis and 
the density of the series. From now on, if not differently stated, it will be 
assumed that p~ are constant functions. In the case of the linear maps the 
Legendre transform produces a noticeable simplification of the structure of 
the Cantor set and gives the parameters of the IFS in a natural way. The 
2~ and b~ are simply the centers of the bunches of lines, and the 
probabilities p~ become the weights of the Dirac measure associated to 
{2~, b~}. In fact the following result is true. 

P r o p o s i t i o n  2. The measure associated to the envelope generated 
by the Legendre transform of the maps is 

dv()L, b) = ~ p~ 6(;t - 2i) 6(b - bi) d)~ db (2.8) 
i = 1  

The proof is trivial and is omitted. 
Propositions 1 and 2 are still true, with obvious changes in notations, 

if we consider the iterate of order n. That corresponds to considering 
the lines generated by pairs {xk, x~+,}; those envelopes give s n points 
c~ " ) -  {2~ "), b~')}, where i =  il ..... i, is a multi-index. 

The following result is true: 

P r o p o s i t i o n  3. We have 

Closure( lim { ? c ~ ' ) } ) = C  (2.9) 

Proof. From the hyperbolicity hypothesis of the IFS it follows that 

lim 2 (") = 0, 2 (") = max ~.J') 
-~  +~ J (2.10) 

lim bJ')(x) = x 
n - - * ~  

and, since the series is dense in C, then dH((b~k)}, C)-..<2 (k). So that the 
assertion easily follows. 
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If we allow overlapping of the images of maps, the correspondence 
between the pair {Xn+J,, Xn} and cl n) fails to be one-to-one for some n 
whatever k is: it happens that the line corresponding to such pairs passes 
through more than one center cl n). Also in this case we expect that the limit 
envelope is C, but there are problems in associating a measure to the nth 
envelope; this ambiguity is reflected in the fact that in this case the 
p-balanced measure associated to such Cantor sets is not completely 
characterized depending on parameter  space, not even in the case of two 
maps.(87 

3. N O N L I N E A R  C A N T O R  SETS 

Let us consider the case of nonlinear maps Ti, i = 1 ..... s, with constant 
probabilities pi. Let us consider first one single piece of the envelope 

b(1)(x) = - 2 U ) ( x ) x  + T(x) (3.1) 

where x E~, T =  T~, or some k = l  ..... s. We then get the following 
parametric expressions for 2 (17, b(1): 

~(1)(X) = T'(x) 
(3.2a) 

b(1)(x) = - T ' ( x ) x  + T(x) 

if we pass to the second iterate of the maps, analogously we get 

"~=) ' T j ( x )  ~,,j(x) = rj (r ,x)  

= # l ~ ( r , x )  ,~l')(x) 

= ,~ ')(r ix)  ~.l'~(v(ri(x)) 

b~(x )  = - ~ ' ( r ~ ( x ) ~  + T~(Lx) 

= - , ~ ( T , x )  ,~l~)(x)x + r A L ( x ) )  

= #l) (r ix  ) b}l)(x) + b~l)(Tix) 

= #~)(T~x) blU(T(T~(x)) + b}U(T~x) (3.2b) 

Note the analogy of (3.2b) with the expression for the parameters of the 
second iterate of a linear IFS: 

2u= 2j2~ 
bij= bj2i + bi 
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(3.2b) generalizes to the case of the nth iterate of the IFS in the following 
way: 

/~l:,!..,in(X) ~- I~ll)(Xil,...,in t ( X ) ) ' ' '  ~ , I1) (X)  

= /~Inl)(Xil ...... in I ( X ) )  " ' "  i~I~)( T~ 1)(Xil,...,in-l(X)) 

("~ x f i  2i,(x,,...,i,_,(x))x + xi,,...,i,(x) (3.2c) b~i,...,i~ ) = -  
k = l  

= ~ll,.~,~n ) l(TinX ) b l l ) (x )  ~L bll,...,~n)_l(Tin x)  
h!n 1~ = 217,...,~ ] , ( T , x )  bl~)(T(T,,(x))  + _,, ........ , ( T , x )  

where xj~,...4 = Tj~ . . . . .  Ty~(x) and the analogy w i th  the l inear case sti l l  
holds true. 

In the case of the inverse determinations of the quadratic maps 
T+_ = + ( x + p )  ~/2, the recursion relations for b ~n~ can be written also in 
another way, due to the fact that 

(T+) ' (x)  = _ + -  

In fact it easy to check that 

2T_+(x) 

_ (o x l b ( "  1)fX] 
--Pt~il , . . . , in ) + 2  i2'""in" " 

In the linear case the envelope is degenerate and reduces to a finite 
number of points. In the strictly nonlinear case this is not possible if the 
maps T~ are not linear in any interval. The envelope is a set of curves 
Cil...~n, one for each map, and is parametrized by x. If we take the 
admissible points which stay in the sequence if, we get the following result. 

P r o p o s i t i o n  4. The admissible points of each algebraic curve 
Cil...i, form a set Ci~...e, which is homeomorphic to the corresponding 
image of the Canter set T~, . . . . .  T~I(C ). The measure/~ei, ...,o supported by 
the set is homeomorphic to the p-balanced measure # restricted to 
Tin . . . . .  Ti l(C). 

It should be noticed that the homeomorphisms is not a 
diffeomorphism in general, since we do not make any special hypothesis of 
regularity for the derivatives of the maps Ti. 
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vector. If we let xj~,...,j, 
shall write 

Proposition 3 can be generalized so as to hold also in the nonlinear 
case, and we get the following result. 

P r o p o s i t i o n  5. We have 

lim max sup 21~ ) i,(x)[ = 0  
. ~  +~ i,....i, x ~  (3.3) 

b ~~ lira supb  (") (x) il,._,in,, z~--"Xil,....in,... ~ C  

where the limit of bil,...,~, in (3.3) is uniform in x e :?. The closure of the limit 
envelope is the Cantor set C itself. 

The proofs are trivial and are omitted. 
The generalization to the multidimensional case is straightforward and 

all the results on unidimensional linear maps stated in Propositions t -3  
can be easily generalized to this case. More generally, we consider a map 
T with s inverses defined on T-1(  [0, 1 ] a) which we assume to be the union 
of s disconnected sets Ik. When the inverse maps Lk(x) are linear and 
contracting on Ik the limit invariant set is a Cantor. We shall write Lk(x) = 
L k x + b ~ ,  where Lk is a d x d  matrix and bk a vector of R a, so that any 
linear map depends on d(d + t)  parameters. Given any couple of points x~, 
x ,+~ of an orbit of a linear or nonlinear Cantor  such that xk = T~ 
in the R a(a+~l parameter  space, we consider the d2-dimensional linear 
manifold 

x~+k = Lxk + bk (3.4) 

= Tjo . . . . .  Tjt(x ) be the nth preimage of a point, we 

xj,...,j, = Lxk + bk (3.5) 

and obtain the d2-dimensional manifolds in parameter  space as the 
envelope of the above linear manifold, namely 

Li,; = ~ (x(,))j....,j.(x) 
(3.6) 

bi = Li, t x(o - (x(o)j. ,j . 

where we denote by x(o the lth component  of the vector x. 

4. M E A S U R E  C O N S T R U C T I O N  FOR H Y P E R B O L I C  JUL IA  SETS 

We consider the explicit case of a quadratic map T ( x ) = x 2 - p  for 
p > 2. The inverse maps are then denoted by T_+ and read 

T+ (x) = +(x + p)l/e = rl(x + p)1/2 (4.1) 
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and their probabilities are denoted by p + .  The Julia set C is contained in 
the interval [-q,q], where q=[l+(4p+l)l/2]/2. In this case the 
envelope (3.1) can be expressed explicitly as a function of 

) 3 ~ ) (x )  = T ' ( x )  = ~ 1 rl 1 
2 (x q- p)1/2 2 T(x) 

so that 

1 
b (1) - 42(1 ) + p2 (1) (4.2) 

and the statements of Propositions 4 and 5 and of Corollary 1 hold true. 
In Fig. 1, we show the first envelopes for the case p = 3, where x e  [ - q ,  q]; 
note the self-similarity between the first-order envelope and subsequent 
ones which correspond to the arcs (Jl,..-, in) with Ji =J~ for all i, k = 1 ..... n. 

We want to use these envelopes to show that, under certain natural 
constraints, the limit of the attractors and p-balanced measures of  a 
sequence of linear IFSs is the Julia set J = C nd its measure. As a particular 
case, it follows that it is possible to reconstruct the measure of the Julia set 
with the sequence of linear Cantor sets introduced in refs. 4-6. The results 
stated here be generalized, for instance, to the case of nonquadratic maps 
and also in dimension greater than one without any problem. 

- .  . . - ' J  

/ . . . . .  

Fig. 1. 

r 

- 3 .  i 

- j  

f ~  

J 

- 3 .  3 .  

The first four envelopes for the case of the quadratic map T =  x 2 -  3. 
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Let us start with the nth-order envelope dn in the parameter space. We 
fix x = s  and the corresponding point on each of the s n arcs of the 
envelope. We can then renormalize these s" points back to the first-order 
envelope ~. To the point on the arc (Jl,..., Jn) we associate a probability 
equal to the measure of the arc n! ") =#(Tj l  . . . . .  Tj~(J)). One could 

r J l  " " " J n  

equally well choose arbitrarily the points on each arc, namely on the arc 
( j~ , . . . , j , )  the point corresponding to x = ~ ( J ' " ' m e  [0, 1]. We can then 
renormalize these points to the first envelope using expression (3.2c) 
and associating to r r (~) " ,~j,,...jt, ,, bi,.. .i~(x)) the point (2j(.~)(xj,...i2(s 
b)~)(x:,...:2(:~))), where ff can be replaced by a different point for any arc, 
namely by ~(J'""J") e [0, 1 ]. 

In this way we put on the first envelope s" points each with a defined 
probability equal to the measure of the corresponding element on the 
order-n partition of the Cantor set. If we let n ~ + ~ ,  the sequence on 
points on the first envelope becomes dense on the image of the Cantor in 
g. The corresponding measure becomes the measure v on g corresponding 
to the measure p on C. 

It is relevant to illustrate the meaning of the limiting procedure and 
the renormalization scheme. We first observe that the set g, and the 
measure v,(2, b) on it correspond to the dynamical system (T ~ ~, C), 
while g and its measure v correspond to (T, #, C). As a consequence, when 
we replace g ,  and v, by a set of s" on each arc and their probabilities equal 
to the measure of the arcs we construct a linear Cantor system (L~, # , ,  C,) 
such that p , ~ #  and C , ~ C  when n - ~ .  There is a problem in 
computing the dynamical variables for L ,  in this limit. However, since the 
free energy ~-u4) scales with n, namely ~ ( T ~  kt), one can 
expect that the limit of ~ ( L , ,  I~,)/n exists and is equal to if(T,/~).  The 
renormalization procedure removes this difficulty, since it produces a 
sequence of renormalized linear Cantor systems ( s  C,) converging to 
(T,/t, C). Any dynamical or thermodynamic variable for the (T, #, C) is 
given by the limit of the corresponding dynamical and thermodynamic 
variables on the sequence of linear Cantor systems. We have therefore two 
families of approximation schemes. The only disadvantage of the 
renormalized scheme is that it produces linear Cantor systems with over- 
lapping preimages. 

T h e o r e m  1. Given a sequence of points 

}L n) (X] b! n) .i1(.~)), i j=  +,  -- j =  1 ..... n 
i n  " " i l  ~ J ~  l n  " " 

each on one of the s n elements of the nth envelope with associated prob- 
ability n! ") . = #(Ti~ i~ and renormalizing them to the first envelope 

i -  l n . .  �9 l I . - 
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C~ via the association to each point of ,()(1)['~il , ' x i ~ - i 2 ( ' ~ ) )  ' bl~l)(xi~...i2(~))), 
then 

Closure l/n-lim+c~ . U (l~l:)(Xin---i2(X))'bl:)(Xin'"i2(X)))l:Cil 
t t ,..., in 

and the measure associated to the closure of the limiting set is/~lc,~' 

It should be noticed that the ordering of the indices in all of the 
formulas is essential throughout all of this section. 

In the case x = q  it is possible to carry out explicitly the calculations 
of renormalization. It should be noticed that, once the renormalized 2's are 
obtained, the renormalized b's are obtained in a straightforward manner 
from the recurrence formulas (3.2c). The calculations of the set of renor- 
malized 2's can be done in a hierarchical way, starting from 2~)... + ( q ) =  
(2~))t(q) and then, once the renormalized parameter  corresponding to a 
certain sequence of + and - of length /, {it, iz ~ ..... il}, is found, at the 
next stage one obtains those corresponding to {i~ ~,...,i~,it} and 
{i z_ ~,..., i~, -i~}. In this way it can be easily checked that all the 2 t points 
of the sequence are renormalized. 

The renormalization scheme can also be easily carried out if we choose 
different for the various 2/~,...,jo(~), bs~,...,s,(Y~ ). This happens if 2 =  

~(J"'J~ are chosen to be the fixed points of ~ ,  . . . . .  Tj,_~, namely 

Xjl , . . . , jn  l (~(Jl , - - . ,Jn  1))~___~(Jl, . . . ,Jn 1) 

5. A P P R O X I M A T I O N  S C H E M E S  

We show that even when the points are not in the arcs of the envelope 
Sn the renormalization scheme can be carried out. Let ~'(") ~!n) / be ( /~ in . . . i l  ~ t n . . . t l z  
the points chosen in a neighborhood of each arc of the envelope g,. If  we 
choose the neighborhood to be a disc containing the arc and with radius 
equal to the diameter of the arc or the convex hull of the arc, when n ~ oo 
the limit obtained by choosing any point on the arc or on its neighborhood 
is the same. The major  difficulty in this case is to associate to each point 
of one element of the sequence a point in the plane of the first envelope so 
that as n ~ + 0% they approach the right points on it. The problem comes 
from the fact that only when the points of the sequence stay on the 
envelope it is possible to use expression (3.2c) in order to renormalize them 
to the first envelope. 

Here we propose two "natural" ways of "renormalizing" them and we 
expect that any reasonable method should give the same limit result if the 
points of the sequence satisfy some natural constraint. 

822/61/1-2-20 
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Let us suppose that the points of the sequence stay inside the convex 
hull of the corresponding element of the envelope, which means that 

I n  �9 " " i l  m i n  ~ ~ 1 n . �9 �9 i I t n �9 � 9  i I m a x  

b!,) ~!.) ~< b!"~ 
t n  �9 " "  i l  m i n  ~ - - l n  �9 �9 - t l  t n  " �9 �9 i l  m a x  

where rain and max refer obviously to the minimal and maximal 2, b in the 
in---il th part of the n th envelope. In this case from Proposition 5 it follows 
easily that ~!~) -(n) ~1,...il, bi~...i~ go to the expected limiting points in the limit of 
infinite n. In order to renormalize to the first envelope, notice that there 
exists a unique ~ I--q,  q] such that ~(~!~)l~...1~. =).!n)~,~ ~x} and there is at 
least one point and there are at most two x~,  x2 ~ I - q ,  q] such that the 
same is true for b!") So projecting each point on the 2 and b axes, we 

i n  �9 " �9 i l  " 

get essentially one or two points inside the convex hull of the first envelope 
in the part we have denoted previously as the in-.. i~th. It is clear that in 
the limit we get convergence also in this case, since due to the uniformity 
of the limits in Proposition 5, there is no serious problem coming from the 
lack of unicity of the "renormalized point." 

If the points stay outside the convex hull, but approach the envelope 
for n ~ + ~  and the scales go uniformly to zero as n ~ ~ ,  then one can 
still project ~(~) ~!~) �9 ~ on the )~ axis in a unique way, but it is 

L i n  " " " i l  ' ~ n  " " "  I I  

impossible to associate by another orthogonal projection any b in the 
allowed set given by the envelope. In this case the idea is to take the two 
tangents to the envelope which come out of the point itself. If for n suf- 
ficiently big they touch allowed points of the envelope, we are done and we 
can associate to each of these point a renormalized one which stays outside 
of the first envelope and is given by the intersection of the corresponding 
renormalized tangents to the first envelope. In this way we still get a point 
in the i , , . . . i~th part of the first envelope as desired and we proceed as 
before. 

The discussion above is the basical argument in the proof of the 
following result. 

T h e o r e m  2. Let a sequence of points 

l n . . . i l ,  , ~ i n . . . i l ]  , i j :  +,  -- ,  j =  1 ..... N 

each one inside the convex hull generated by the corresponding i~...  i~ th 
element of the partition of order n be given. Suppose that to each element 
of the sequence is associated a probability h!  n) . = It(Ti, . . . . .  T J ) ) .  Renor- 

r t n , .  - l I 

malize these points to the convex hull of the first envelope C~ according to 
the method proposed above, associating to each one the corresponding 

where 2' is either x~ or x2 in the notations above. 
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Then 

t lim U ~}:)(xi~ .i2(2)), (') -' } Closure �9 . bi 1 ( X i n . . . i 2 ( X ) ) )  = C i l  
( n ~  + o e  . 

Ii  ,. . . ,  in 

and the measure associated to the closure of the limiting set is #leil- 
In the case the points lay outside of the hull, but are such that the two 

tangents coming out of them touch the corresponding element of the parti- 
tion in points which are the Legendre transform of points .~1, 22 in 
Ti~ . . . . .  T i n [ - q , q ]  , associate the intersections of the tangents to the 
envelope coming out of the renormalized points 

{ ) . l ~ ) ( X i n , . . . , i 2 ( X 2 )  ) ,  b l ~ ) ( X i n , . . . , i 2 (  f C 2 )  ) } 

Let us associate probabilities to each point as before. Then, also in this 
case, the closure of the limit set is C~ and the measure associated to the 
closure of the limit set is #le, l. 

In the case considered by Turchetti and Vaienti, (4-6) the 

~!"),,...~, = (2q) -~ diam(Ti, . . . . .  T~,(J)) 

where diam denotes the diameter, and are such that 

tn �9 " " i l  m i n  tn " �9 " i l  "~" *~ in �9 " - il  m a x  

The ~!~) are chosen in such a way that the image of the linear map is In " " " i l  

L!"~,,...h([--q, q ] ) =  T~n. .~ l ( [ -q ,  q])  and it can be easily verified that the 
hypotheses of Theorem 2, part 2 are verified in this case. The points of the 
sequence are given by the intersection of the tangents coming out of the 
Legendre transform of the iterated extremal points - q ,  q of the Julia set J. 

Theorems 1 and 2 can be straighforwardly implemented in the cases of 
any finite set of nonlinear maps Tk, k =  1,..., N, which satisfy (2.1) and (2.2) 
and in higher dimensions than one. 

One can interpret the regions in which one gets convergence to the 
measure and the attractor of the target Cantor set, by Theorem 2, as a 
subset of the basin of attraction of the first envelope associated to the 
Cantor set itself. 

6. S O M E  R E M A R K S  ON THE N O N - C A N T O R I A N  CASES 
p = 0  A N D  p = 2  

In this section we consider two particular cases which correspond to 
nonhyperbolic Julia sets, namely p = 0 and p = 2. In case p = O, Proposi- 
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tion 5 can be modified to hold, while it seems to fail in the case p = 2, due 
to the fact that the critical point z = 0 stays on the Julia set J. In this last 
case, since the critical point z = 0 lies on the Julia set J, the limit envelope 
fails to be in a natural correspondence with the Julia set and one can 
recover a homeomorphism between the first envelope and the Julia set 
going to the one-point compactification of C. What  happens in these two 
cases shows that some of the results stated throughout this paper do not 
depend on the hyperbolic structure of the Julia set and suggests the 
possibility of investigating more general sets of maps. 

For simplicity, in the following we will change our notation and make 
calculations using the direct map T(z )= z 2 - p  instead of its two inverse 
branches T + ( x ) =  +_(x + p)1/2. This does not affect the results stated in the 
previous sections, of course. 

In the case p = 0, the map is T(z )=  z 2, where z e C and the Julia set 
J is simply the unit circle in the complex plane J =  {z ~ C: [z[ = 1 }. Using 
the direct map, Eq. (3.1) becomes 

b (1) = -2(1)T(z) + z (6.1) 

and parametrically we get 

,~ (1 ) (Z)  .~. 1 1 

T'(z)  2z 
(6.2a) 

b(1)(z )= T(z) + z z 
T'(z)  2 

So the envelope is a closed curve which lies in the complex plane {2, b}, 
as expected. Since we are interested in the points of the form z = e  i~ 
0 e [-0, 2~), by the coordinate transform 

we get parametrically 

2 (I) = �89 exp iA (11 

b (1) = �89 exp iB (1) 

A(1)(O) = - 0  

B(1)(O)=O 

where 0 e  [0, 2n) or B (1)= - A  (1). 
If we consider the kth  iterate of the map T, T(k)(z) = z 2~, then we get 

1 zl_2k 

(6.2b) 
2 k -  1 

b(k)(z)-- 2k z 
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which is still a closed curve, which under the transformation 

1 
2 (k) = ~ exp iA (k) 

2 k - -  --1 
b (k) -  2 ~  expiB (k) 

becomes 

A(~)(O) = - ( 2  ~ -  1)0 

B(k)(O) = 0 

where the domains of the parameters are the usual ones. 
It is evident that Proposition 5 can be restated in this case as follows. 

Proposition 5'. We have 

1 
lim s u p  l~r = lim ~-~=0 

2 k -  1 
lim b(k~(z)= lim - - ~ - - z = z  

k ~  +co k ~  +oo 

(6.3) 

so that the limit envelope is again a copy of the Julia set lying in the plane 
)~--0. 

In the case p = 2 the Julia set J =  [ - 2 ,  2]; this is a singular case since 
z = 0 ~ aT, where T '(0)  = 0, so that the envelope of T(z )  = z 2 - 2, 

1 
bC1)(2(1)) + 2)~(1), ~ ( 1 ) ~  ( - -OQ) ,  - 0 . 2 5 ]  u [0.25, + c o )  

extends to infinity as well as those corresponding to the iterates of T. In 
fact, the set of points such that (T~ T ' ( z ) T ' ( T z ) . . .  T ' ( T  ~ l z ) = 0  
are given by 0 and its preimages up to order k - 1 .  Since z = 0  is 
preperiodic of the fixed point z = q = 2, they all stay on the Julia set J. As 
concerns the kth  envelope, it is given by 2 k branches which go to infinity 
as z approaches one of the singular points from the left or the right. This 
will be true also in the limit, so that we cannot recover the Julila set J in 
the complex plane 2 = 0 uniformly in x as in all the cases considered 
previously. 

A possible solution to this problem seems to come from the one-point 
compactification of the complex plane .3b = 0; 32 = 0, since it allows the 
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first envelope to become homeomorphic to the Julia set J ;  it then seems 
natural to expect that in this modified framework one could recover all 
previous results. 

7. C O N C L U S I O N S  

From the above discussion there emerges the existence of a simple and 
natural way of associating an infinite set of linear mappings with untrivial 
parameters to a Cantor  set through a Legendre transformation. This 
association gives a natural framework in which to treat the problem of 
linear Cantorian approximations (see Theorems 1 and 2) and it seems 
worth future investigation to study the problem of a complete dynamical 
and topological reconstruction through sequences of linear IFSs for which 
the two theorems above assure convergence of the attractors and the 
corresponding p-balanced measures. In this framework one would suppose 
which are the exact nonlinear maps and set up a linear approximation 
along the lines proposed in this paper. 

It should be noticed that it is possible also to consider a true inverse 
problem starting from a "time" series, constructing the approximated 
envelopes (with will be piecewise linear) and making all the calculations on 
these approximated envelopes. 

More important  to us appears the problem of generalizing the results 
stated here to nonhyperbolic cases. If we consider the case of quadratic 
maps, when p > 2, then we can perform our calculations in C, while in the 
limiting case p = 2 it is necessary to move to the one-point compactifica- 
tion of the complex plane in order to generalize the results, at least as far 
as the first envelope is concerned. If p = 0, the envelope becomes a closed 
curve in C 2 and for p > 0 and sufficiently small the envelope is still a curve 
and Proposition 5' may be restated with obvious modifications so as to 
hold also in this case. We are interested in investigating the properties of 
the envelope and its images which are independent of the form of the maps 
and of the values of the parameters associated to the maps themselves. To 
this aim we are starting with the case of the quadratic maps, since the 
structure of the Julia sets is better known in this cases. 

A P P E N D I X .  A R E M A R K  A B O U T  T H E  M U L T I V A R I A B L E A N D  
M U L T I D I M E N S I O N A L  CASE 

In this Appendix we make some remarks on the cases of multidimen- 
sional variables and maps. Let us start with a simple case in which the 
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maps depend not only on the first predecessor element of the orbit, but 
also on the second one in a rather peculiar way: 

X n = S ( X n _ l ,  X n _ 2 )  = T(xn ~ + c~xn_2) (A.la) 

Then, w i t h x = x n  1, y = x n _ 2 ,  z = x  +uy,  Eq.(3 .1)  becomes 

b(1)(x, y) = S(x,  y)  - ,~(1)x - #(1)y 

so that parametrically we get 

#S 
;~(~) = ~ (x, y ) =  T'(z) 

OS 
#(1) = ~Y (x, y) = a T '  = ~2 (t) 

(A.2) 

~S x, 0S 
b(1)=S(x ,  y ) - ~ x  ( y ) X - ~ y ( X ,  y ) y = X ( x ,  y ) - 2 ( 1 ) ( x + ~ y )  

= T(z) - 2(t)(z)z = T(z) - T ' ( z ) z  

It is clear that formally one can reduce this to a one-dimensional problem 
for the first envelope, since this one lies in a plane. If the maps T are linear 
that is obviously true for all iterates, since the envelope degenerates to a 
single point. In the nonlinear case one can calculate the relations between 
the l th-order envelope and the first-order one, and the expressions one gets 
are quite tedious and are omitted. 

In the case where the maps depend on the first k predecessors of the 
sequence 

x n = S ( x n  1 ..... X n - k )  

= T(cq, lx~ l"]-O~l,2Xn_2-l- . . .  Ac-O~l,kXn_k, 

.... c~,lX, l + e , , 2 x , - 2 +  "'" +c~r, kx,, k) (A.lb) 

where some et, i-~ 0 for some i for any l =  1,..., r with r < k ,  we can arrive at 
similar conclusions to that of expression (A.2), in the sense that the first 
envelope lies in an r-dimensional hyperplane of the ( k +  1)-parameter 
space. 

In the d-dimensional case, we will obtain formally analogous expres- 
sions in the case in which the component  maps T(0 are such that they 
depend on the linear combination of variables 

T(o(x(a),..., x(d)) = F(el,a x(~) + . . .  + O~l,dX(d),..,, O~r, lX{1)  -~- " ' "  -]- O~r,d X(d)) 

(A.3) 
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for some c~i. j constants and r < s; then the ith component of the envelope 
lies in an r-dimensional hyperplane instead of a d-dimensional one, where 
notations are kept consistent with those used in previous sections. 

In particular, if the maps T(i) are linear in all the variables, the 
envelope will degenerate, as expected, to a point. 
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